CS 0007
Introduction to
Computer Programming

FUNCTIONS!
AKA METHODS

Luis Oliveira

Functions (Methods)

* “The best thing since if statements” - me
= They allow you to organize your code into logical sections
= You can use the same code over and over - without copy paste!
= [t makes code easier to read!

* “Do | need functions?”
= |f your code is 10 lines... No

= |f your code is 100 lines... Probably
= |f your code is 1000 lines... YES!

* Partition your code, and it becomes easier to read and write!
= You can test your code in chunks too!

Anatomy of a function

The type of the

P It Name: use it to
Header: describes unction resu call the function

the function

name (argumentl Arguments: the
argument?2 inputs parameters
ar‘gumentS) to the function

Body: the implementation

Return: the output of of the function
the function

Flow of program

- Calling a function moves the execution from the caller to the callee
= [t comes back once it is done.

addNums (a b) {
a+b callee

main(String [Jlargs)

sum = addNums (): caller

ons are black boxes

* You don’t need to know how they work internally.

= Only what they do! ddN
addNums (° .

a+b Amazing function that adds
two numbers. You do not
need to know how it is

addNums (3 implemented!!!

sunm

(a>b) { // This is silly btw! [nputs:

sum = a + b 1. Number to add
2. Number to add
Outputs:

sum 1. Numbers added together

* Arguments allow you to give data to the function
* They will have a type and a name

name (argumentl)

» They must be explicitly types (even if of the same type!)

name (argumentl, argument2)

Return value

» The return value is the response (output) of the function
= void means nothing is returned!

« All types can be returned

name (argumentl, argument2)

* In Java only one value/type can be returned

= Other languages have multiple return values
= We can “trick” java into this, but we'll look at that later ©

Use it or lose it!

addNums (a,

* The return value must be used or stored

result = addNums/()

otherResult = addNums/() *

System. .println(addNums())

* If you don't... you will not be able to get it again

addNums ()

Different functions, different scopes

* Functions are sibling scopes! So variable names can be repeated!

sayHello(String input) {
String name = input
System. .println(+ name)

These variables are
not the same

sayGoodMcrning(String input) A
String name = input
System. .printin(+ name)

Same names, but not necessary

* It's common for variable names to match with the function arguments

sayHello(String name) A
System. .println(+ name)

main(String [Jargs){
String name =
sayHello(name)

main(String [J]args){

String blargh =
sayHello(blargh)

Terrible variable name!
But valid!

They have no clue!

* Functions don’t know values of variables declared in other functions!

*EVER!

*Not even when called recursively

* This is on purpose!
= [magine having to remember all about variables in your 1,000,000 line code!

* Isolation and abstraction
= These are the cornerstones (yes, 2!) of functions!

* About recursive......

RECURSIVE FUNCTIONS

REDEFINING THE PROBLEM

Countdown

. . . from number
* Solving problems with recursion:

* The problem can be redefined as a simpler
version of the same problem

e E.g.: Countdown from a number

* In code: The function calls itself

* Multiple times until it reaches the base case
Base case: problem with simple solution

* Usually improve readability Countdown
* Occasionally the opposite from 0

* Are limited by number of recursive calls

* Memory limitation (by the OS = More memory will not help ®)
* CS majors: Take CS449 for more details ;)

CS 0007'=Summer 2020

Countdown
from number-1

Anatomy of a recursive function Countdown from n

* A recursive function MUST have a
base case and a recursive case
= Without the recursive: it's not recursive! duh!

= Without the base case: it'll never end.
« Search google for recursion for an example

* The recursive case MUST (usually) reduce
the size of the problem

= Otherwise it'll never end! print 0 print n

= |f doing user input validation, that is not true.

Countdown

from n-1

Anatomy of a recursive function

* This is a bad recursive function

callMyself

