
Luís Oliveira

Summer 2020

CS 0007
Introduction to

Computer ProgrammingFunctions!
aka Methods

#5



Functions (Methods)

CS 0007 – Summer 2020

• “The best thing since if statements” – me
▪ They allow you to organize your code into logical sections

▪ You can use the same code over and over → without copy paste!

▪ It makes code easier to read!

• “Do I need functions?”
▪ If your code is 10 lines… No

▪ If your code is 100 lines… Probably

▪ If your code is 1000 lines… YES!

• Partition your code, and it becomes easier to read and write!
▪ You can test your code in chunks too!

2



Anatomy of a function

CS 0007 – Summer 2020 3

public static int name(int argument1, 
double argument2, 
String argument3)

{
// Do something
return 0;

}

Arguments: the 
inputs parameters 

to the function

Body: the implementation 
of the function

Name: use it to 
call the functionHeader: describes 

the function

Return: the output of 
the function

The type of the 
function result



Flow of program

CS 0007 – Summer 2020

• Calling a function moves the execution from the caller to the callee
▪ It comes back once it is done.

4

public static int addNums(int a, int b) {
return a+b;

}

public static void main(String []args)
{

int sum = addNums(1, 3);
}

caller

callee



Functions are black boxes

CS 0007 – Summer 2020

• You don’t need to know how they work internally.
▪Only what they do!

5

Amazing function that adds 
two numbers. You do not 
need to know how it is 
implemented!!!

Inputs: 
1. Number to add
2. Number to add
Outputs:
1. Numbers added together

addNums
public static int addNums(int a, int b) {

return a+b;
}

public static int addNums(int a, int b) {
int sum;
if (a>b) { // This is silly btw!

sum = a + b;
} else {

sum = b + a;
}
return sum;

}



Arguments

CS 0007 – Summer 2020

• Arguments allow you to give data to the function

• They will have a type and a name

• They must be explicitly types (even if of the same type!)

6

public static int name(int argument1)

public static int name(int argument1, int argument2)



Return value

CS 0007 – Summer 2020

• The return value is the response (output) of the function
▪ void means nothing is returned!

• All types can be returned

• In Java only one value/type can be returned
▪Other languages have multiple return values

▪We can “trick” java into this, but we’ll look at that later ☺

7

public static void name()

public static int name(int argument1, int argument2)



Use it or lose it!

CS 0007 – Summer 2020

• The return value must be used or stored

• If you don’t… you will not be able to get it again

8

public static int addNums(int a, int b){...}

int result = addNums(1, 2);

int otherResult = addNums(1, 2) * 2;

System.out.println(addNums(1, 2));

addNums(1, 2); // gone!



Different functions, different scopes

CS 0007 – Summer 2020

• Functions are sibling scopes! So variable names can be repeated!

9

public static void sayHello(String input) {
String name = input;
System.out.println("Hello" + name);

}

public static void sayGoodMorning(String input) {
String name = input;
System.out.println("Good Morning" + name);

}

These variables are 
not the same



Same names, but not necessary

• It’s common for variable names to match with the function arguments

10

public static void sayHello(String name) {
System.out.println("Hello " + name);

}
public static void main(String []args){

String name = "Luis";
sayHello(name);

}

public static void main(String []args){
String blargh = "Luis";
sayHello(blargh);

}
Terrible variable name!

But valid!



They have no clue!

• Functions don’t know values of variables declared in other functions! 

▪EVER!
▪Not even when called recursively

• This is on purpose!
▪ Imagine having to remember all about variables in your 1,000,000 line code!

• Isolation and abstraction
▪ These are the cornerstones (yes, 2!) of functions!

• About recursive……

11



Recursive functions

12CS 0007 – Summer 2020



CS 0007 – Summer 2020

Redefining the problem

13CS 0007 – Summer 2020

Countdown 
from number number

Countdown 
from number-1

• Solving problems with recursion:
• The problem can be redefined as a simpler

version of the same problem

• E.g.: Countdown from a number

• In code: The function calls itself 
• Multiple times until it reaches the base case

Base case: problem with simple solution

• Usually improve readability
• Occasionally the opposite

• Are limited by number of recursive calls
• Memory limitation (by the OS →More memory will not help )

• CS majors: Take CS449 for more details ;)

Countdown 
from 0 0



Anatomy of a recursive function

• A recursive function MUST have a 
base case and a recursive case
▪Without the recursive: it’s not recursive! duh!

▪Without the base case: it’ll never end. 
• Search google for recursion for an example

• The recursive case MUST (usually) reduce 
the size of the problem
▪Otherwise it’ll never end!

▪ If doing user input validation, that is not true.

14

Countdown from n

Is n 0?

Yes!

print 0

No!

Countdown 
from n-1

print n



Anatomy of a recursive function

• This is a bad recursive function

15

callMyself

Call myself


