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Logic
Or is it?
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Booleans again
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• Boolean represent truthiness of statements
boolean condition = false;

condition = true; 

• Booleans can store the result of comparisons
int x=-2, y=10;

boolean isXgreaterThanY = x>y;   // false

boolean isXNegative = x<0;       // true
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Decisions
Beyond the simple calculator
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So far….
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• Code runs sequentially

• This only takes us so far 
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int age = 33;

System.out.print("Hello, what's your name? ");
String name = keyboard.next();

System.out.print("How old are you " + name + "?");
age = keyboard.nextInt();



Algorithms with choices
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Making decisions
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• If statements
▪ A structure that allows us to make decisions!
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boolean isHome = true;
if(isHome) 
{

System.out.println(“Share a meal?");
}
System.out.println("This always runs!");



Making different decisions
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• Else allows us to do something else (ah!) when the condition is false
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boolean isHome = true;
if(isHome)
{

System.out.println("Share a meal?");
} 
else 
{

System.out.println(“Leave a message!");
}
System.out.println("This always runs!");



Multiple choices
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boolean enjoyHotBeverage = true;
boolean enjoyActivities = true;
if( enjoyHotBeverage ) {

System.out.println(“Which beverage?");
System.out.println(“Don’t know if likes activities!");

} 
else if( enjoyHotBeverage ) {

System.out.println(“Doesn’t like hot beverages!");
System.out.println(“But likes activities!");

}
else {

System.out.println(“No beverages, no activities!");
}
System.out.println("This always runs!"); 



Don’t use the else without the if
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• Don’t do this!
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boolean funny = false;
if(funny)
{
}
else
{
System.out.println(“Not funny :(");

}
System.out.println("This always runs!");



This is funny…. NOT!
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• If you need to negate a condition, you have the NOT operator
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funny NOT funny

Yes No

No Yes

funny !funny

true false

false true

boolean funny = true;
boolean notFunny = !funny;



Negate the condition
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• If you negate the condition, you can remove the empty if statement
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boolean funny = false;
if(!funny)
{
System.out.println(“Not funny :(");

}
System.out.println("This always runs!");



Advanced conditions
Ready OR Set AND Go!
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AND and OR – Going to the beach
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Car Fuel Going to the beach

No No No

No Yes No

Yes No No

Yes Yes Yes
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Bus Train Going to the beach

No No No

No Yes Yes

Yes No Yes

Yes Yes Yes

A B Result

False False False

False True False

True False False

True True True

A B Result

False False False

False True True

True False True

True True True

Can I go with my car? Can I go using public transportation?



Going to the beach with Java
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• Can I go with my car?

• Can I go using public transportation?

15

boolean haveCar, haveFuel;
if ( haveCar && haveFuel ){

System.out.println("Can go to the beach!");
}

boolean haveBus, haveTrain;
if ( haveBus || haveTrain ){

System.out.println("Can go to the beach!");
}



Short-circuits

CS 0007 – Summer 2020

• Short-circuit: decide before evaluating everything
▪ E.g. if I have a bus that I can take it doesn’t matter if I have a train

▪ E.g. if I have a car and fuel, doesn’t matter if I have a bus or a train

16

boolean haveCar, haveFuel, haveBus, haveTrain;
if ( (haveCar && haveFuel) || haveBus || haveTrain )
{

System.out.println("Can go to the beach!");
}

Boolean haveBus, haveTrain;
if ( haveBus || haveTrain )
{

System.out.println("Can go to the beach!");
}



Order again
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• So… () go first, */% go second, and +- go third
▪Where do the boolean operators fit in this?

• So what goes before/after that?
▪NOT goes before

▪ Relational operators go after

▪ Logical operators go last

• Last thing done is always assignment

17

Operator Associativity

-(negation)    ! (NOT) Right to left

* / % Left to right

+ - Left to right

<  >  <=  >= Left to right

==  != Left to right

&& Left to right

|| Left to right

=  +=  -=  *=  /=  %= Right to left



Soooooo…..
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• Some thing like this
age > 30 && height < 70

• Is equivalent to this
(age > 30) && (height < 70)

• But the second one is WAYYYY more clear ☺
▪ So use parentheses

▪ Clarity over character economy!!!
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Switches get stitches
Or something like that
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When all conditions are equal
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• This is possible! And there is nothing wrong with it.
▪However…
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String beverage = “Tea".toLowerCase();
if (beverage.equals(“tea")) 
{

System.out.println(“Serve some tea");
}
else if (beverage.equals(“coffee")) 

{
System.out.println(“Serve some coffee");

} 
else if (beverage.equals(“cocoa")) 
{

System.out.println(“Serve some cocoa");
} 
else 
{

System.out.println(“I don’t have that ");
}



Switches
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• There is another Java decision structure that you can use
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String beverage = “Tea".toLowerCase(); 
switch (beverage) {

case "tea":
System.out.println("Serve some tea");
break;

case "coffee":
System.out.println("Serve some coffee");
break;

case "cocoa":
System.out.println("Serve some cocoa");
break;

default:
System.out.println("I don’t have that ");
break;

}

These are 
needed to leave 

the switch



Switches
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• If you remove the breaks, you have the grandmother switch
▪ “You are not eating properly, have everything!”
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String beverage = “Tea".toLowerCase(); 
switch (beverage) {

case "tea":
System.out.println("Serve some tea");
//break;

case "coffee":
System.out.println("Serve some coffee");
//break;

case "cocoa":
System.out.println("Serve some cocoa");
//break;

default:
System.out.println("I don’t have that  ");
//break;

} 

Remove them.
See what 
happens



Switches
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• Switches only work with some types:
▪ Integer types (byte, short, int, long)

▪ String 

▪ char

• The case must be a literal!
▪No variables

▪ If that is needed use ifs

• No comparisons
▪ Either equal or not-equal

▪No greater/less than, etc.

• default is the default behaviour (i.e. if nothing else matches)
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String beverage = “Tea".toLowerCase(); 
switch (beverage) {

case <literal>:
// Runs if 
break;

case <literal>:
System.out.println("Serve some coffee");
break;

default:
System.out.println("I don’t have that ");
break;

}



Scopes
Can you see them?
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Blocks and scopes
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• Blocks start with { and end with } – each defines its own scope
▪ They can be stacked

▪ Parent scopes are
visible in children scopes

▪ Sibling scopes are not
visible to each other

▪ Variables with same name
cannot exist in children 
scopes

▪ Variables with same name
can exist in sibling scopes
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public class Main {

public static void main( String []args) {
// Main scope
int value = 10;
if(true) {

// If scope
double value; // Illegal because a parent scope already has the variable
String valueString = "Value: ";
// value can be used because it's a parent scope!
System.out.println(valueString + value);
// value can be modified!
value = 2;

} else {
// else scope
// This is fine, because the if scope is a sibling!
String valueString = "Value: ";
// value can be used because it's a parent scope!
System.out.println(valueString + value);
// value can be modified!
value = 4;

}
// Only from this point onwards valueString also exists in the main scope
String valueString = "Value: ";
System.out.println(valueString + value);

}
}


