
Luís Oliveira

Summer 2020

CS 0007
Introduction to

Computer ProgrammingDecisions decisions
decisions

#3

Logic
Or is it?

2CS 0007 – Summer 2020

Booleans again

CS 0007 – Summer 2020

• Boolean represent truthiness of statements
boolean condition = false;

condition = true;

• Booleans can store the result of comparisons
int x=-2, y=10;

boolean isXgreaterThanY = x>y; // false

boolean isXNegative = x<0; // true

3

Decisions
Beyond the simple calculator

4CS 0007 – Summer 2020

So far….

CS 0007 – Summer 2020

• Code runs sequentially

• This only takes us so far 

5

int age = 33;

System.out.print("Hello, what's your name? ");
String name = keyboard.next();

System.out.print("How old are you " + name + "?");
age = keyboard.nextInt();

Algorithms with choices

CS 0007 – Summer 2020 6

Making decisions

CS 0007 – Summer 2020

• If statements
▪ A structure that allows us to make decisions!

7

boolean isHome = true;
if(isHome)
{

System.out.println(“Share a meal?");
}
System.out.println("This always runs!");

Making different decisions

CS 0007 – Summer 2020

• Else allows us to do something else (ah!) when the condition is false

8

boolean isHome = true;
if(isHome)
{

System.out.println("Share a meal?");
}
else
{

System.out.println(“Leave a message!");
}
System.out.println("This always runs!");

Multiple choices

CS 0007 – Summer 2020 9

boolean enjoyHotBeverage = true;
boolean enjoyActivities = true;
if(enjoyHotBeverage) {

System.out.println(“Which beverage?");
System.out.println(“Don’t know if likes activities!");

}
else if(enjoyHotBeverage) {

System.out.println(“Doesn’t like hot beverages!");
System.out.println(“But likes activities!");

}
else {

System.out.println(“No beverages, no activities!");
}
System.out.println("This always runs!");

Don’t use the else without the if

CS 0007 – Summer 2020

• Don’t do this!

10

boolean funny = false;
if(funny)
{
}
else
{
System.out.println(“Not funny :(");

}
System.out.println("This always runs!");

This is funny…. NOT!

CS 0007 – Summer 2020

• If you need to negate a condition, you have the NOT operator

11

funny NOT funny

Yes No

No Yes

funny !funny

true false

false true

boolean funny = true;
boolean notFunny = !funny;

Negate the condition

CS 0007 – Summer 2020

• If you negate the condition, you can remove the empty if statement

12

boolean funny = false;
if(!funny)
{
System.out.println(“Not funny :(");

}
System.out.println("This always runs!");

Advanced conditions
Ready OR Set AND Go!

13CS 0007 – Summer 2020

AND and OR – Going to the beach

CS 0007 – Summer 2020

Car Fuel Going to the beach

No No No

No Yes No

Yes No No

Yes Yes Yes

14

Bus Train Going to the beach

No No No

No Yes Yes

Yes No Yes

Yes Yes Yes

A B Result

False False False

False True False

True False False

True True True

A B Result

False False False

False True True

True False True

True True True

Can I go with my car? Can I go using public transportation?

Going to the beach with Java

CS 0007 – Summer 2020

• Can I go with my car?

• Can I go using public transportation?

15

boolean haveCar, haveFuel;
if (haveCar && haveFuel){

System.out.println("Can go to the beach!");
}

boolean haveBus, haveTrain;
if (haveBus || haveTrain){

System.out.println("Can go to the beach!");
}

Short-circuits

CS 0007 – Summer 2020

• Short-circuit: decide before evaluating everything
▪ E.g. if I have a bus that I can take it doesn’t matter if I have a train

▪ E.g. if I have a car and fuel, doesn’t matter if I have a bus or a train

16

boolean haveCar, haveFuel, haveBus, haveTrain;
if ((haveCar && haveFuel) || haveBus || haveTrain)
{

System.out.println("Can go to the beach!");
}

Boolean haveBus, haveTrain;
if (haveBus || haveTrain)
{

System.out.println("Can go to the beach!");
}

Order again

CS 0007 – Summer 2020

• So… () go first, */% go second, and +- go third
▪Where do the boolean operators fit in this?

• So what goes before/after that?
▪NOT goes before

▪ Relational operators go after

▪ Logical operators go last

• Last thing done is always assignment

17

Operator Associativity

-(negation) ! (NOT) Right to left

* / % Left to right

+ - Left to right

< > <= >= Left to right

== != Left to right

&& Left to right

|| Left to right

= += -= *= /= %= Right to left

Soooooo…..

CS 0007 – Summer 2020

• Some thing like this
age > 30 && height < 70

• Is equivalent to this
(age > 30) && (height < 70)

• But the second one is WAYYYY more clear ☺
▪ So use parentheses

▪ Clarity over character economy!!!

18

Switches get stitches
Or something like that

19CS 0007 – Summer 2020

When all conditions are equal

CS 0007 – Summer 2020

• This is possible! And there is nothing wrong with it.
▪However…

20

String beverage = “Tea".toLowerCase();
if (beverage.equals(“tea"))
{

System.out.println(“Serve some tea");
}
else if (beverage.equals(“coffee"))

{
System.out.println(“Serve some coffee");

}
else if (beverage.equals(“cocoa"))
{

System.out.println(“Serve some cocoa");
}
else
{

System.out.println(“I don’t have that ");
}

Switches

CS 0007 – Summer 2020

• There is another Java decision structure that you can use

21

String beverage = “Tea".toLowerCase();
switch (beverage) {

case "tea":
System.out.println("Serve some tea");
break;

case "coffee":
System.out.println("Serve some coffee");
break;

case "cocoa":
System.out.println("Serve some cocoa");
break;

default:
System.out.println("I don’t have that ");
break;

}

These are
needed to leave

the switch

Switches

CS 0007 – Summer 2020

• If you remove the breaks, you have the grandmother switch
▪ “You are not eating properly, have everything!”

22

String beverage = “Tea".toLowerCase();
switch (beverage) {

case "tea":
System.out.println("Serve some tea");
//break;

case "coffee":
System.out.println("Serve some coffee");
//break;

case "cocoa":
System.out.println("Serve some cocoa");
//break;

default:
System.out.println("I don’t have that  ");
//break;

}

Remove them.
See what
happens

Switches

CS 0007 – Summer 2020

• Switches only work with some types:
▪ Integer types (byte, short, int, long)

▪ String

▪ char

• The case must be a literal!
▪No variables

▪ If that is needed use ifs

• No comparisons
▪ Either equal or not-equal

▪No greater/less than, etc.

• default is the default behaviour (i.e. if nothing else matches)

23

String beverage = “Tea".toLowerCase();
switch (beverage) {

case <literal>:
// Runs if
break;

case <literal>:
System.out.println("Serve some coffee");
break;

default:
System.out.println("I don’t have that ");
break;

}

Scopes
Can you see them?

24CS 0007 – Summer 2020

Blocks and scopes

CS 0007 – Summer 2020

• Blocks start with { and end with } – each defines its own scope
▪ They can be stacked

▪ Parent scopes are
visible in children scopes

▪ Sibling scopes are not
visible to each other

▪ Variables with same name
cannot exist in children
scopes

▪ Variables with same name
can exist in sibling scopes

25

public class Main {

public static void main(String []args) {
// Main scope
int value = 10;
if(true) {

// If scope
double value; // Illegal because a parent scope already has the variable
String valueString = "Value: ";
// value can be used because it's a parent scope!
System.out.println(valueString + value);
// value can be modified!
value = 2;

} else {
// else scope
// This is fine, because the if scope is a sibling!
String valueString = "Value: ";
// value can be used because it's a parent scope!
System.out.println(valueString + value);
// value can be modified!
value = 4;

}
// Only from this point onwards valueString also exists in the main scope
String valueString = "Value: ";
System.out.println(valueString + value);

}
}

