CS 0007
Introduction to
Computer Programming

DECISIONS DECISIONS
DECISIONS

Luis Oliveira







Booleans again

* Boolean represent truthiness of statements
boolean condition = false;
condition = true;

* Booleans can store the result of comparisons
int x=-2, y=10;
boolean isXgreaterThanY = x>y; // false
boolean isXNegative = x<0; // true




DECISIONS

Beyond the simple calculator




« Code runs sequentially

age =

System. .print(
String name = keyboard.next()

System. .print( + name +
age = keyboard.nextInt()

 This only takes us so far ®




Algorithms with choices

THE FRIENDSHIP ALGORITHM

DR. SHELDON COOPER , PH.D

PLACE PHONE
CALL

‘ﬁi&
fyi THEORY N-0
—» )
TO SHARE
RECREATIONAL
ACTICITY? TELL
ME ONE OF YOUR
INTERESTS? YES
«- o G
THE

LEAD
OBJECTIONABLE

WAIT FOR
CALLBACK

DINE TOGETHER? ]
Ve

WE DO THAT
THEA HAVE THEA JOSETHER?

COFFEE —»| HAVE COFFEE
COCOA E COCOA PARTAKE IN
INTEREST

BEGIN FRIENDSHIP




Making decisions

* |f statements
= A structure that allows us to make decisions!

)

System. .println(

1
System. .printin(




Making different decisions

- Else allows us to do something efse (ah!)when the condition is false

System. .printin(

System. .printin(

ystem. .println(




Multiple choices

) o
System. .printin(
System. .printin(

(

System. .println(
System. .printin(

{
System. .printin(

1
System. .printin(




Don’'t use the else without the if

* Don’t do this!

System. .println(

{
}
{
}
S

ystem. .println(




This is funny.... NOT!

* |[f you need to negate a condition, you have the NOT operator

Yes No true false

No Yes false true

funny =

notFunny = !funny




Negate the condition

* |If you negate the condition, you can remove the empty if statement

System. .println(

1
System. .println(




ADVANCED CONDITIONS

Ready OR Set AND Go!




AND and OR - Going to the beach

Can | go with my car? Can | go using public transportation?




Going to the beach with Java

* Can | go with my car?

haveCar, haveFuel
( haveCar && haveFuel ){

System. .println(

» Can | go using public transportation?

haveBus, haveTrain
( haveBus || haveTrain ){
System. .println(




Short-circuits

* Short-circuit: decide before evaluating everything
= E.g. if | have a bus that | can take it doesn’t matter if | have a train

haveBus, haveTrailn
( haveBus || haveTrain )

System. .printin(

= E.g. if | have a car and fuel, doesn’t matter if | have a bus or a train

haveCar, haveFuel, haveBus, haveTrain
( (haveCar && haveFuel) || haveBus || haveTrain )

System. .printin( )




* So... () go first, */% go second, and +- go third

= Where do the boolean operators fit in this?

-(negation) ! (NOT) Right to left

* So what goes before/after that? ' % Left to right
= NOT goes before

. + - Left to right
= Relational operators go after _
= Logical operators go last \’ M S T
= = Left to nght
. . . && Left to right
- Last thing done is always assignmen

\ | | Left to right
= 4= = ¥= [= %= Right to left




S000000.....

* Some thing like this
age > 30 && height < 70

* |s equivalent to this
(age > 30) && (height < 70)

* But the second one is WAYYYY more clear ©

= So use parentheses
= Clarity over character economy!!!




SWITCHES GET STITCHES

Or something like that




When all conditions are equal

* This is possible! And there is nothing wrong with it.

= However...

String beverage = .toLowerCase ()
(beverage.equals( ))

System. .println(
(beverage.equals/(

System. .println(
(beverage.equals/(

System. .printin(

System. .println(

{
}
{
;
{
}
{
}



Switches

* There is another Java decision structure that you can use

String beverage = .toLowerCase()

(beverage) {
. These are

System. .println( , needed to leave
the switch

System. . printdrrt

System. P tntn(

System. Orintin(




Switches

* |If you remove the breaks, you have the grandmother switch
= “You are not eating properly, have everything!”

String beverage = .toLowerCase ()
(beverage) {

: Remove them.
System. .println( ) = See what

happens

System. .printla<
System. . prirtn(

System. Jrantin(




* Switches only work with some types:
= Integer types (byte, short, int, long)

= String
= ch String beverage = .toLowerCase()
char (beverage) {
. i | =
The case must be a literal! 7w G
= No variables
= If that is needed use ifs e T
* No comparisons ;
= Either equal or not-equal System.out.printin(

= No greater/less than, etc.

- default is the default behaviour (i.e. if nothing else matches)




SCOPES

Can you see them?




Blocks and scopes

* Blocks start with { and end with } - each defines its own scope
= They can be stacked

= Parent scopes are nain( String [largs) {
visible in children scopes L =

ol 1o ) {
= Sibling scopes are not 3
visible to each other String valueString =

. Variab|eS With same name System. .println(valueString + value)
cannot exist in children e
scopes

= Variables with same name
can exist in sibling scopes

String valueString =
System. .println(valueString + value)

value =

hy

String valueString =
System. .println(valueString + value)
+
+




