
Luís Oliveira

Summer 2020

CS 0007
Introduction to

Computer ProgrammingHello World!
I’m alive!

#3

Hello!

2CS 0007 – Summer 2020

Hello world!

CS 0007 – Summer 2020

/*
Author: Luis Oliveira
This is a simple example of a Java program

*/
public class Hello
{

public static void main(String[] args)
{

// This is the code that will run
System.out.print("Hello World!");

}
}

3

Hello world! - Decrypted

CS 0007 – Summer 2020

/*

This is a block comment. It starts with the “forward-slash asterisk”

Nothing you write here is seen by Java and it’s compiler.

It ends with the “forward-slash asterisk”, again

*/

public class Hello  This is the class header Hello is it’s name

{

public static void main(String[] args)  This is where your program starts!

It’s the main function header

{

// This is an in-line comment. Next line is seen by Java!

System.out.print("Hello World!");

}

}

4

About variables

5CS 0007 – Summer 2020

Primitive numeric variable types

CS 0007 – Summer 2020 6

byte - stores tiny integer numbers
range: -128 → 127

short - stores small integer numbers
range: -32,768 → 32,767

int - stores integer numbers
range: -2,147,483,648 → 2,147,483,647

long - stores large integer numbers
range:

-9,223,372,036,854,775,808 → 9,223,372,036,854,775,807

float, double - store real numbers → double has more range and
precision (more decimal places)

float range: 1.401e-45 to 3.402e38 (same negative)

double range: 4.941e-324 to 1.798e308 (same negative)
→ it’s complicated ☺

Declaring a variable:
type name = value;

Primitive non-numerical variable types (and String)

CS 0007 – Summer 2020 7

char (like in charizard!)- stores text characters
e.g.: A single letter, or a single punctuation mark

String – stores a text i.e, a bunch of chars
variable size!

boolean – truthiness, i.e. true or false
range: ermm… either true or false

others? – we can create types! But we’ll discuss that later

Check example Types.java

Literals

CS 0007 – Summer 2020

• When you type a number or string, that’s a literal.
▪Only primitive types and String have literals

• String is special because it’s VERY common.

• E.g.

8

type literal

String “Hello Luis!”

char ‘X’

boolean false

int 42

double 3.14159

Note: Strings use
double quotes,
chars use single

quotes!

String text = “Hello Luis!”;

char letter = ‘X’;

boolean validPoint = true;

int number = 42;

double pi = 3.14159;

Naming rules

CS 0007 – Summer 2020

• Variables
▪Names must start with a letter or a _ (underscore)

▪Names can contain numbers
• E.g: age, _age, part1, _variable

▪Names are all low-case, except to separate different words
• E.g.: word, twoWords, threeWordVariable

▪Names are case sensitive: variable is not the same as vArIaBlE

▪Use good names!
• Bad names: a, aa, aaa, abc, here, qwerty

• I’ve seen this before: x, xx, xxx;  Don’t!

• Good names: age, height, position, distance, sumOfVariables

9

Naming rules (cont.)

CS 0007 – Summer 2020

• Constants
▪Names must start with a letter or a _ (underscore)

▪Names can contain numbers
• E.g: age, _age, part1, _variable

▪Names are all upper-case
• E.g.: WORD, TWO_WORDS, MULTIPLE_WORD_CONSTANT

▪Use good names!

▪Use the keyword final
• E.g. final int INCHES_IN_A_FOOT = 12;

10

Operations on variables

CS 0007 – Summer 2020

• Assignments
▪ = → The assignment operator (doesn’t compare)

e.g.: destination = source

▪ First calculate EVERYTHING to its right (variable or expression)

▪ Finally store the result into the variable to it’s left

• Examples:
age = 33; // age gets the number 33

age = age - 1; // age value is changed to 32 : the old

// value of age minus 1

halfAge = age / 2; // halfAge gets 16: the value of age divided by 2

11Check example Operators.java

Java numeric operators (easy)

CS 0007 – Summer 2020

Operator Name Type Example

- Negation Unary result = -b;

* Multiplication Binary result = a * b;

/ Division Binary result = a / b;

% Modulus Binary result = a % b;

+ Addition Binary result = a + b;

- Subtraction Binary result = a - b;

12Check example Operators.java

Java relational operators (medium)

CS 0007 – Summer 2020

Operator Name Type Example

== (don’t confuse
with single =)

Equals Binary a == b;

!= Not equal Binary a != b;

> Greater than Binary a > b;

>= Greater than or equal Binary a >= b;

< Less than Binary a < b;

<= Less than or equal Binary a <= b;

13Check example Operators.java

Java precedence of operators

CS 0007 – Summer 2020 14

• What happens first?
▪ People: Hate maths, love solving maths problems on Facebook ¯_(ツ)_/¯

• When in doubt ☺
▪ Parentheses

▪ 2 + 10 ∗ (55 / 10) is the same as 2 + (55 / 10) ∗ 10

Operator Associativity

- (negation) Right to left

* / % Left to right

+ - Left to right

First

Last

Expression Result

2 + 10 ∗ −2

2 + 10 ∗ 55 / 10

2 + 55 / 10 ∗ 10

72 / 60 + 72% 60

15 ∗ 10% 2 + 10

-18

57

52

13

10

Check example Precedence.java

Apples and Oranges

CS 0007 – Summer 2020

• Integer types smaller than int, are converted to int :’)
▪ aByte + 10 is an int

▪ aByte + aByte is an int

▪ aByte + aShort is an int

▪ aShort + aShort is an int

• Types larger than int keep their type
▪ E.g., aByte + aLong is a long

• Real numbers turn into the more precise type in expression
▪ E.g., aDouble/aFloat is a double

• Operations with Strings, become strings
▪ “The number is: ” + anInt is a String

15Check example Casts.java

Shrinking values (aka casts :)

CS 0007 – Summer 2020

• Casts allow us to fit a LARGE type into a small type
▪ But with great power…

16

anInt = 100;
aByte = (byte)anInt;

anInt = 200;
aByte = (byte)anInt;

OK!

DOESN’T FIT!

Numbers and binary

17CS 0007 – Summer 2020

Positional number systems

• The numbers we use are written positionally: the position of a digit
within the number has a meaning.

18

2 0 0 0
0 0 0

1 0

+ 9

2 0 1 9 =

2 x 103

0 x 102

1 x 101

9 x 100

=

Positional number systems

• The numbers we use are written positionally: the position of a digit
within the number has a meaning.

19

2 0 1 9
1s10s100s1000s

100101102103

● How many (digits) symbols do we have in our number system?

○ 10: 0, 1, 2, 3, 4, 5 ,6 ,7, 8, 9

Most Significant Least Significant

Range of numbers

Suppose we have a 4-digit numeric display.

• What is the smallest number it can show?

• What is the biggest number it can show?

• How many different numbers can it show?
▪ 9999 - 0 + 1 = 10,000

▪What power of 10 is 10,000?
• 104

20

Binary – Base 2

21

How many symbols in binary????

22

Binary (base-2)

• We call a Binary digIT a bit – a single 1 or 0

• When we say an n-bit number, we mean one with n binary digits

23

27 26 25 24 23 22 21 20

1001 0110
128s 64s 32s 16s 8s 4s 2s 1s

1 × 128 +
0 × 64 +
0 × 32 +
1 × 16 +
0 × 8 +
1 × 4 +
1 × 2 +
0 × 1

= 15010

=
To convert binary to decimal: ignore 0s, add up
place values wherever you see a 1.

MSB LSB

CS 0007 – Summer 2020

Bits, bytes, nibbles

24

• A bit is one binary digit, and its unit is lowercase b.

• A byte is an 8-bit value, and its unit is UPPERCASE B.

• A nibble (also nybble) is 4 bits
• Corresponds nicely to a single hex digit.

• When we say "32-bit CPU," we mean it was built to use 32-bit numbers.
• This means it can, for example, add two 32-bit numbers at once.

– half of a byte

Round numbers

CS 0007 – Summer 2020

Decimal Binary

100 = 1 20 = 1

101 = 10 21 = 2

102 = 100 22 = 4

103 = 1000 23 = 8

104 = 10000 24 = 16

105 = 100000 25 = 32

106 = 1000000 26 = 64

107 = 10000000 27 = 128

108 = 100000000 28 = 256

108 = 100000000000 29 = 512

108 = 100000000000000 210 = 1024

25

byte – 1 Byte (8 bits)
range: -128 → 127

if 8 digits can represent
numbers up to 99999999

8 bits can represent numbers
up to:

11111111 <- in binary
255 <- in decimal

But because we need to
represent negative numbers
we need to split the range
in half.

Primitive numeric variable types

CS 0007 – Summer 2020 26

byte – 1 Byte (8 bits)
range: -128 → 127

short – 2 Bytes (16 bits)
range: -32,768 → 32,767

int – 4 Bytes (32 bits)
range: -2,147,483,648 → 2,147,483,647

long – 8 Bytes (64 bits)
range:

-9,223,372,036,854,775,808 → 9,223,372,036,854,775,807

float – 4 Bytes (32 bits)
range: still complicated ☺

double – 8 Bytes (64 bits)
range: still complicated ☺

Primitive non-numerical variable types (and String)

CS 0007 – Summer 2020 27

char (like in charizard!)- stores text characters
e.g.: A single letter, or a single punctuation mark

String – stores a text i.e, a bunch of chars
variable size!

boolean – truthiness, i.e. true or false
range: ermm… either true or false

others? – we can create types! But we’ll discuss that later

Check example Types.java

CS 0007 – Summer 2020

Kilo, mega, tera

28

Potatoes Bytes Bytes

1g (gram) 1B (Byte) 1B (Byte)

1kg (Kilogram) = 1000g 1kB (Kilobyte) = 1000B 1kiB (Kibibyte) = 1024B
(power of 2 nearest to 1000)

1Mg (Megagram) = 1000Kg 1MB (Megabyte) = 1000kB 1MiB (Mebibyte) = 1024kiB

1Gg (Gigagram) = 1000Mg 1GB (Gigabyte) = 1000MB 1GiB (Gibibyte) = 1024MiB

1Tg (Teragram) = 1000Gg 1TB (Terabyte) = 1000GB 1TiB (Tebibyte) = 1024GiB

1Eg (Exagram) = 1000Tg 1EB (Exabyte) = 1000TB 1EiB (Exbibyte) = 1024TiB

Used for hard drive capacity
and network speeds

Used for most other things!
Because binary!

A 1TB drive only has 931GiB!

CS 0007 – Summer 2020

The real world IS CONFUSING!!!!

29

Sometimes this is used to
mean 931GiB 

This always means 931GiB!
☺

931GB 931GiB

Why binary? Whynary?

• Why indeed?

• What color is this?

30

0 1 2 3 4 5 6 7 8 9

Why binary? Whynary?

• Why indeed?

• What color is this?

31

0 1

Everything in a computer is a number

CS 0007 – Summer 2020

• Java strings are encoded using UTF-16
▪Most letters and numbers in the English alphabet are < 128.

▪ “Strings are numbers”
• 83 116 114 105 110 103 115 32 97 114 101 32 110 117 109 98 101 114 115 0

32

Do try this at home: what does this mean?
• 71 111 111 100 32 74 111 98 0

EVERYTHING

CS 0007 – Summer 2020

• Images and colors? Numbers!

• Videos? Numbers!

33

122 185 32

239 97 181

181 40 41

